Review
Advances in Plastic Waste Recycling: Technologies, Environmental Impact, Research Trends, and Policy Perspectives
More Detail
1 Global Vision Christian School, Chucheongbuk-do 27727, Korea* Corresponding Author
International Journal of Environmental Sustainability and Protection, 5(3), September 2025, 9-19, https://doi.org/10.35745/ijesp2025v05.03.0002
Submitted: 12 June 2025, Published: 30 September 2025
OPEN ACCESS 21 Views 4 Downloads
ABSTRACT
Plastic pollution is a global concern, necessitating innovative recycling strategies. This review presents an overview of recent technologies that recycle various types of plastics, including mechanical, chemical, and solvent-based methods. Applications in the production of secondary materials, fuels, and monomers are explored, and their contributions to reducing greenhouse gas emissions and resource depletion are compared. Based on the review results, future research directions are proposed to enhance recycling efficiency based on advanced catalysis, enzyme engineering, and polymer redesign. Policies and regulatory frameworks of the EU, USA, Japan, and South Korea are compared to identify their multi-faceted approaches that integrate technology, legislation, and sustainable design.
Keywords:
Plastic, Recycling, Pollution, Environment, Mechanical method, Chemical method, Solvent-based method
CITATION (APA)
Kim, H. (2025). Advances in Plastic Waste Recycling: Technologies, Environmental Impact, Research Trends, and Policy Perspectives. International Journal of Environmental Sustainability and Protection, 5(3), 9-19. https://doi.org/10.35745/ijesp2025v05.03.0002
REFERENCES
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Science. Advances 2017, 3, e1700782. https://doi.org/10.1126/sciadv.1700782.
- OECD. Available online: https://www.oecd.org/en/publications/policy-scenarios-for-eliminating-plastic-pollution-by-2040_76400890-en.html (accessed on July 10, 2025).
- Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, D.; Aitken, J.; Marthouse, R.; Hajbane, S.; Cunsolo, S.; Schwartz, A.; Levivier, A.; Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R. and Reisser, J. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. ScientificReports. 2018, 8, 4666. https://doi.org/10.1038/s41598-018-22939-w.
- Thompson, R. C.; Moore, C. J.; Saal, F. S. V.; Swan, S. H. Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B. 2009, 364, 2153–2166. https://doi.org/10.1098/rstb.2009.0053.
- American Chemistry Council. Available online: https://www.americanchemistry.com/content/download/7885/file/Life-Cycle-Impacts-of-Plastic-Packaging-Compared-to-Substitutes-in-the-United-States-and-Canada.pdf (accessed on July 10, 2025).
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society B 2009, 364, 2115–2126. https://doi.org/10.1098/rstb.2008.0311.
- Evode, N., Qamar, S. A., Bilal, M., . Barceló, D., Iqbal, H. M. N. Plastic waste and its management strategies for environmental sustainability. Case Studies in Chemical and Environmental Engineering 2021, 4, 100142. https://doi.org/10.1016/j.cscee.2021.100142.
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and recovery of plastics: A review. Waste Management, 2009, 29, 2625–2643. https://www.nswai.org/docs/Recycling%20and%20recovery%20routes%20of%20plastic%20solid%20waste%20(PSW)%20-%20A%20review.pdf.
- Lopez, G.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals: A review. Renewable and Sustainable Energy Reviews 2017, 73, 346–368.
- Soni, V. K., Singh, G., Vijayan, B. K., Chopra, A. Kapur, G. S., Ramakumar, *S. S. V. Energy & Fuels 2001, 16, 12763–12808. https://doi.org/10.1021/acs.energyfuels.1c01292.
- Arena, U. Process and technological aspects of municipal solid waste gasification: A review. Waste Management 2012, 32, 625–639. https://doi.org/10.1016/j.wasman.2011.09.025.
- Ügdüler, S.; Van Geem, K.M.; Roosen, M.; Mys, N.; De Meester, S. Challenges and opportunities of solvent-based additive extraction methods for plastic recycling. Waste Management 2020, 104, 148–182. https://doi.org/10.1016/j.wasman.2020.01.003.
- Walker, T.W.; Frelka, N.; Shen, Z.; Chew, A.K.; Banick, J.; Grey, S.; Kim, M.S.; Dumesic, J.A.; Van Lehn, R.C.; Huber, G.W. Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Science Advances 2020, 6, eaba7599. https://doi.org/10.1126/sciadv.aba7599.
- Tournier, V.; Topham, C.M.; Gilles, A.; David, B.; Folgoas, F.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M.L.; Texier, H.; Gavalda, S., Cot, M., Guémard, E., Dalibey, M., Nomme, J., Cioci, G., Barbe, S., Chateau, M.,. André, I.,. Duquesne, S., Marty, A. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020, 580, 216–219. https://doi.org/10.1038/s41586-020-2149-4
- Chen, S.; Tong, X.; Woodard, R.W.; Du, G.; Wu, J., Chen, J. Identification and characterization of bacterial cutinase. Journal of Biological Chemistry 2008, 283, 25854–25862. https://doi.org/10.1074/jbc.m800848200.
- Sang, T., Walls, C. J., Hill, G., Britovsek, G. J. P. Polyethylene terephthalate degradation under natural and accelerated weathering conditions. European Polymer Journal 2020, 136, 10987. https://doi.org/10.1016/j.eurpolymj.2020.109873.
- Porobić, S., de Souza, F. M., Gupta, R. K. Recent Progress in Enzymatic Degradation and Recycling of Polyurethanes. Biochemical Engineering Journal 2024, 208, 109363. http://dx.doi.org/10.1016/j.bej.2024.109363.
- Matthews, C., Moran, F., Jaiswal, A. K. A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. Journal of Cleaner Production, 2021, 283, 125263. https://doi.org/10.1016/j.jclepro.2020.125263.
- WRAP: Available online: https://wrap.org.uk/resources/report/plastics-market-situation-report-2019 (accessed on June 5, 2025).
- Jia, X.; Qin, C.; Friedberger, T.; Guan, Z.; Huang, Z. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Science Advances. 2016, 2, e1501591. https://doi.org/10.1126/sciadv.1501591.
- Kaminsky, W.; Kim, J.-S. Pyrolysis of mixed plastics into aromatics. Journal of Analytical and Applied Pyrolysis, 1999, 51, 127–134. https://doi.org/10.1016/S0165-2370(99)00012-1.
- Miandad, R. Barakat, M., Aburizaiza, A., Rehan, M., Nizami, A.-S. Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 2016, 102, 822–838. http://dx.doi.org/10.1016/j.psep.2016.06.022.
- Rahmati, F., Sethi, D., Shu, W., Lajayer, B. A.,Mosaferi, M., Thomson, A., Price, G. W. Advances in microbial exoenzymes bioengineering for improvement of bioplastics degradation. G.W. Chemosphere 2024, 355, 141749. https://doi.org/10.1016/j.chemosphere.2024.141749.
- Mahajan, N., Gupta, P. New insights into the microbial degradation of polyurethanes. RSC Advances 2015, 5, 41839–41854. https://doi.org/10.1039/C5RA04589D.
- Verified Market Reports. Available online: https://www.verifiedmarketreports.com/product/waste-sorting-robots-market-szie-and-forecast/ (accessed on June 10, 2025).
- Zhang, Q., Zhang, X., Mu, X., Wang, Z., Tian, R., Wang, X., Liu, X Recyclable waste image recognition based on deep learning. Resources, Conservation and Recycling 2021, 171, 105636. https://doi.org/10.1016/j.resconrec.2021.105636.
- 27 Atasi, C., Kern, J., Ramprasad, R. Chureh. Design of Recyclable Plastics with Machine Learning and Genetic Algorithm. Journal of Chemical Information and Modeling, 2024, 64, 9249–9259. https://pubs.acs.org/doi/10.1021/acs.jcim.4c01530
- 28 European Union. Avaliable online: https://research.gatech.edu/using-ai-find-polymers-future (accessed on July 9, 2025).
- 27Jones, G. R., Wang, H. S., Parkatzidis, K., Whitfield, R., Truong, N. P., Anastasaki, A. Reversed Controlled Polymerization (RCP): Depolymerization from Well-Defined Polymers to Monomers. Journal of the American Chemical Society 2023, 145, 9898–9915. https://doi.org/10.1021/jacs.3c00589.
- 30. Demarteau, J., Epstein, A. R., Christensen, P. R., Abubekerov, M., Wang, H., Teat, S. J., Seguin, T. J., Chan, C. W., Scown, C. D., Russell, T. P., Keasling, J. D., Persson, K. A., Helms, B. A. Circularity in mixed-plastic chemical recycling enabled by variable rates of polydiketoenamine hydrolysis. Science Advances, 2022, 8, eabp8823. https://doi.org/10.1126/sciadv.abp8823.
- 31. Grewell, D., Gowrishankar S., and Eric C. Depolymerization of Post-Consumer Polylactic Acid Products. Journal of Renewable Materials, 2014, 2, 157–165. http://dx.doi.org/10.7569/JRM.2014.634112
- European Union. Avaliable online: https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en (accessed on July 9, 2025).
- EUR-Lex. Avaliable online: https://eur-lex.europa.eu/eli/dir/2018/852/oj/eng (accessed on July 9, 2025).
- EUR-Lex. Avaliable online: https://eur-lex.europa.eu/eli/dir/2019/904/oj/eng (accessed on July 9, 2025).
- U.S. Environmental Protection Agency (EPA). Avaliable online: https://www.epa.gov/circulareconomy/national-recycling-strategy (accessed on July 9, 2025).
- California State Portal. Avaliable online: https://bcp.dof.ca.gov/2526/FY2526_ORG7600_BCP8169.pdf (accessed on July 9, 2025).
- CalRecycle. Available online: https://calrecycle.ca.gov/packaging/packaging-epr/ (accessed on July 9, 2025).
- Senate Committee on Environment and Public Works. Available online: https://www.epw.senate.gov/public/_cache/files/c/8/c8a43f2e-46af-419a-9630-aab905151f77/027E6145A55544DB55FB3433CF6628E74BFD252D7F65C1304085DB650D6432F0.09-28-2023-collins-testimony.pdf (accessed on July 9, 2025).
- Ministry of the Environment. Available online: https://www.env.go.jp/en/index_00002.html (accessed on July 9, 2025).
- Elaw: Available online: Available online: https://www.env.go.jp/en/index_00002.html (accessed on July 9, 2025).
- World Bank Group. Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/099061924015034800/p1771831af057103b1b8c21e55f7c5be566 (accessed on July 9, 2025).
The articles published in this journal are licensed under the CC-BY Creative Commons Attribution International License.